Long-Term Potentiation of Glial Synaptic Currents in Cerebellar Culture

نویسنده

  • David J Linden
چکیده

Glial cells in the brain express neurotransmitter receptors and can respond appropriately to application of exogenous neurotransmitters such as glutamate. However, activation of receptors by endogenous, synaptically released transmitter has been difficult to demonstrate directly. Using cell-pair recording in cerebellar cultures from embryonic mouse, it is shown that activation of a cerebellar granule neuron can give rise to a rapid inward current in an adjacent glial cell. This current is mediated by activation of Ca2+-permeable AMPA/kainate receptors and is largely independent of glutamate reuptake or gap junctional coupling. Furthermore, prolonged stimulation of the granule neuron at 4 Hz can give rise to long-term potentiation (LTP) of the glial synaptic current that has similar properties to LTP of granule neuron-Purkinje neuron synaptic transmission--its induction is independent of postsynaptic depolarization, postsynaptic Ca2+ influx, or glutamate receptor activation but requires presynaptic Ca2+ influx. These findings suggest a model in which cerebellar LTP is both induced and expressed presynaptically and therefore may be detected by either neuronal or glial postsynaptic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptically evoked glutamate transport currents may be used to detect the expression of long-term potentiation in cerebellar culture.

Cerebellar long-term potentiation (LTP) is a use-dependent increase in the strength of the granule cell-Purkinje neuron synapse that occurs after brief stimulation of granule cell axons at 2-8 Hz. Previous work has shown that cerebellar LTP also may be seen when synaptic currents are evoked in granule cell-glial cell pairs in culture. This finding suggests a model in which cerebellar LTP is exp...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

Monitoring Glutamate Release during LTP with Glial Transporter Currents

Although much has been learned about the mechanisms underlying NMDA receptor-dependent long-term potentiation (LTP), considerable debate remains as to whether LTP is expressed as an increase in the synaptic release of glutamate or as an increase in the sensitivity of the postsynaptic glutamate receptors. We have directly measured changes in the synaptic release of glutamate by recording synapti...

متن کامل

P13: Potassium Channels and Long-Term Potentiation Formation

Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997